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Abstract. The compressible Ising chain with the spins S = 1 and S = 1 is studied. The lattice 
and the spin variables are decoupled by using a direct generalisation of the Mattis-Schultz 
transformation for S = 4. The effective spin Hamiltonian appears to be equivalent to the 
rigid king chain Hamiltonian with an additional biquadratic interaction. We calculate 
exactly the zero-field free energy, the inital susceptibility and the correlation functions of 
the effective Hamiltonian. Numerical analysis of the obtained results reveals considerable 
effects induced by the lattice compressibility. 

1. Introduction 

There has been a latent interest in the influence of the lattice compressiblity on the 
magnetic behaviour of a one-dimensional Ising system (1D) during the last fifteen 
years. Mattis and Schultz (1963) were the first to treat the one-dimensional compres- 
sible Ising chain. In the appendix of their paper, devoted to a phenomenological theory 
of the problem, they proved exactly that there is no effect due to the spin-lattice 
coupling. While Mattis and Schultz (1963) assumed the free-ends boundary conditions 
and a phonon spectrum corresponding to nearest-neighbour harmonic interactions, 
Enting (1973) adopted the Einstein phonon spectrum and the periodic boundary 
conditions. Thus he (Enting 1973) demonstrated that the effective spin Hamiltonian is 
equivalent to a rigid Ising chain with the nearest and next-nearest neighbour exchange 
interactions. In the same year, Salinas (1973) proved that the free energy of the 1D 
compressible Ising chain, whose lattice is exposed to fixed forces, is related to the free 
energy of the compressible Ising chain, confined to a fixed length, by a standard 
Legendre transformation. In particular, Salinas (1973) clarified an error in the paper by 
Bolton and Lee (1970), who overlooked the role of the zero wavevector phonon mode 
and consequently claimed that the result of Mattis and Schultz (1963) was a by-product 
of their general treatment of the problem. 

Motivated by experiments on the quasi one-dimensional magnets, Mijatovi6 and 
MiloSeviE (1977) studied a linear king chain embedded in a three-dimensional 
compressible lattice. The perturbative approach of Mijatovi6 and MilogeviE (1 977) was 
improved by the virtually exact approach of DjordjeviE and MiloSeviE (1978). The 
latter authors proved that due to the spin-lattice coupling the magnetic specific heat 
maximum is reduced and shifted to lower temperatures, whereas a counter-effect was 
predicted in a simplified treatment of the problem (Oitmaa and Barber 1975). Finally, 
Figueiredo et a1 (1978) have found exactly the bulk behaviour of a system of the two 
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compressible Ising chains which are coupled with rigid vertical rods and with exchange 
interactions along the rods and diagonally between every two rods. 

In all previous treatments of the 1D compressible Ising system the conventional 
two-value (hl)  spin variables were assumed. Here we present exact results obtained for 
the 1D compressible Ising model with spin S = 1 and S = 4. Using the transfer matrix 
method we calculated the free energy, the specific heat, the pair correlation functions 
(Sisi) and (SYS?) and the zero-field susceptibility of the corresponding effective spin 
system. The model and details of the calculations are explained in 9 2. Discussion of 
the obtained results and the appropriate numerical investigations are given in § 3. 
Links with the treatments of the S = case are established and clarified. It should be 
noted that, comparing with the work of Mattis and Schultz (1963), we found consider- 
able effects due to the spin-lattice coupling. These effects may be directly ascribed to 
the induced biquadratic exchange interactions in the effective spin Hamiltonian. Thus 
our work is also pertinent to the study of the Ising model with the biquadratic exchange, 
a subject of notable interest in itself (see e.g. Hintermann and Rys 1969, Kinsky and 
Furman 1975). 

2. The model and its solution 

As we are concerned with effects of the thermal fluctuations of distances between 
neighbouring spins on the magnetic behaviour of the spin system, we study the 
following Hamiltonian, 

where Si is the z projection of the spin at site i, xi is the displacement of site i from its 
equilibrium position and y is the corresponding first-order change of the exchange 
function from the rigid-lattice value J. The mass and the momentum of the particle at 
site i are m and p i  respectively, while k is the spring constant between the neighbouring 
sites. It is assumed that xi and p i  obey the standard quantum-mechanical commutation 
relations. 

Adopting the free boundary conditions, we can achieve decoupling of the spin and 
lattice variables in (2.1) by using the unitary transformation 

which is a direct generalisation (Barma 1975) of the transformation used by Mattis and 
Schultz (1963). In consequence the spin-dependent part of the Hamiltonian (7.1) takes 
the form 

Xe,=J SiSi+l-A (SiSi+1l2, (2.3) 

A = y2/2k, (2.4) 

i i  

with 

where the lattice-dependent part retains the form of the last two sums in (2.1). The 
appearance of the biquadratic interaction in Xeff should be observed. If Si were the 
two-value variable Si = *+ (or equivalently *l) the corresponding part in He, would 



1D compressible Ising chain 248 1 

result in a constant, and there would be no effect of the spin-lattice coupling (Mattis and 
Schultz 1963). On the contrary, in the case of spin-1 and spin-; (Si = 1,0, -1 and Si = 4, 
2, -2, -2, respectively) there are considerable effects of the biquadratic term in (2.3). In 
what follows we present results for these two cases. Although the S = 1 case appears to 
be a particular case of a previous study (Krinsky and Furman 1975), we will summarise 
here our results, not only because they are obtained in a somewhat different way but 
particularly because they provide a convenient framework for exhibiting the more 
complex results of the S = 5 case. Thereto we will point out an error in the previous 
treatment of the problem. 

The partition function of the Hamiltonian (2.3) is related to the transfer matrix f 
(Kramers and Wannier 1941) by 

1 1  

zN = Tr( fN), (2.5) 

where N is the number of spins in the chain. In the thermodynamic limit ( N  -+ CO) the 
free energy per spin F can be expressed in terms of the largest eigenvalue A of the 
transfer matrix, 

F = -(l/p) In A ,  (2.6) 

where p is the reciprocal of the product of the Boltzmann constant kB and temperature 
T. 

In the case S = 1 the transfer matrix of (2.3) is of the form 

f l=  1 1 1 ,  (2.7) 1 
where 

C = exp[p ( A  - J)] and B = exp[p ( A  + J ) ] .  (2.8) 

We found that the transformation wl Q-' results in a diagonal matrix if Q and Q-' are 
chosen to be 

v=- A [ 1 1  '1 and Q-'= 1 1-2 2a 0 1, (2.9) 
1 -b  a - b  

1 -b  b - a  
(a  - b ) h  

1 0 -1 
J 2  

with 

a = ( C + B - l + K ) / 2  and b = (C+B - 1 -K)/2, (2.10) 

and 

K = [(C + B - 1)* + 8]? (2.11) 

The diagonal elements of the matrix Qfl Q-' are 

A 1  = ( C + B  + 1 + K)/2, A 2 =  (C + B  + 1 -K)/2, As= C - B ,  (2.12) 

where the indices associated with A designate the correspondi?g*r?w of the matrix. 

energy per spin of is 
It can be verified that A 1  is the largest diagonal element of VTV-'. Hence the free 

F=-kBTln[(C+B+1+K)/2] .  (2.13) 
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From expression (2.13) one can easily obtain the magnetic specific heat, but we do 
not write the rather lengthy formula. The initial susceptibility cannot be obtained from 
(2.13). For this reason and for the sake of completeness we calculate the two-spin 
correlation function 

where i j and the sum is over all possible spin configurations, while 9, is the matrix 

0 0 -1 

The correlation function (2.14) can be expressed in terms of 
F, = pTlp-l 

s = pgl p-1, 
and 

so that 

( S i s j ) ~  = ( ~ / z N )  Tr(Fr'-j+i,!?lpi-l&), 

or, in the thermodynamic limit, 

where 

ELZ = A 2 / A 1  and  EL^= A d A i .  

A simple calculation of the trace in (2.19) yields 

Thus, regardless of the order of j and i, we may write 

In a quite similar way we find the quadrupolar correlation function 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

By using the fluctuation-dissipation relation (see e.g. Stanley 1971) 

k B T X T = C  (Sisj) (2.24) 
i.1 

we obtain the following expression fo the initial susceptibility per spin: 

(2.25) 
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A comparison of formula (2.25) and the corresponding formula in Kinsky and 
Furman (1975) can reveal a discrepancy between the two. We may attribute it to an 
error in the derivation of the latter. To this end we checked formula (2.25) by 
calculating XT in a quite different way from the one exposed here (Suzuki et a1 1967). 
We obtained the same result (2.25). 

In the case S = f the transfer matrix is of the form 

/ H  M D E \  

(2.26) 

where the matrix elements are 

H = exp[9/3(9A/4- J)/4], 

D = exp[3P(3A/4+J)/4], E = exp[9/3(9A/4 +5)/4], (2.27) 

F = exp[P(A/4 -J)/4l, 

M = exp[3P(3A/4-J)/4], 

G = [P(A/4 +J)/4]. 

The transfer matrix (2.26) can be diagonalised by using the matrices 

Ri 1 1 R I  PI P2 L2 L3 

$=-!.-(: Jz 1 R: R3 -R3 R2  -:I, $-1=-!"p2 Jz P2 p3 P3 -L1 L1 -L2 " 1  (2.28) 

-1 -R4 PI P2 -L2 -L3 

where 
H +E -F - G + Ki H + E -F - G - Ki 

2(M+D) ' 2 ( M + D )  ' 
R2 = Ri = 

E - H +F- G -k K2 H -E -F + G -Kz R3 = R4 = 

Pt = -R2P2, P2 = -(RiR2 - l)-', (2.29) 

2(M-D) ' 2(M-D) 

P3= -R1P2, L i z  -R4L2, 

L2 = -(R3R4 - l)-', L3 = -R3L2, 
with 

KI = [ ( H  + E - F - G)* + 4(M + D)2]i'2, (2.30) 

and 

Kz = [ ( H -  E -F + G)'+4(M -D)2]1'2. (2.31) 

The diagonal elements of the matrix w 3 / z  $-' are 
A ;  = ( H + E + F + G + K l ) ,  A i = A i  -K1, 

A & = (H -E + F - G + K2)/2, = A & - K2. A 
(2.32) 

It can be shown that A '1 is the largest diagonal element, and thereby the free energy 

F = - k B T l n [ ( H + E + F + G + K 1 ) / 2 ] .  (2.33) 

per spin of the Hamiltonian (2.3), in the case S = $, has the form 
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From the above expression for F one can straightforwardly derive the magnetic 
specific heat formula, but we do not quote it here as it is a formidably lengthy formula. 
On the other hand, the initial susceptibility cannot be obtained from (2.33), and we have 
to repeat the same steps performed in the S = 1 case. Thus, we find the ‘dipolar’ 
correlation function 

( S ; S ~ ) = ~ [ ( L ~ + ~ R ~ L Z ) ( ~ P ~  +R3Pz)(hi/A;)’i-i’ 

+ (Lz + ~ R ~ L ~ ) ( ~ P ~ R ~ + P Z ) ( A ; / A  ;)I;-”]. (2.34) 

In addition to (Sisi) we find the quadrupolar correlation function 

(sps;) = & [ ( ~ R ~ P ~  +pZ)* + (9p1 + R , P ~ ) ( ~ R ~ P ~  + P ~ ) ( A ; / A ;  )Ii-9. 
The initial susceptibility follows from formulae (2.24) and (2.34): 

(2.35) 

It is a matter of simple algebra to verify that when A goes to zero, i.e. when the 
lattice compressiblity vanishes, expressions (2.25) and (2.36) reduce to the correspond- 
ing expressions obtained for the rigid chains (Suzuki et a1 1967). Of course the same is 
true for the magnetic specific heat expressions. 

3. Discussion 

Here we present numerical evaluations of the thermal properties of the effective 
Hamiltonian (2.3). In figures 1 and 2 we plot the magnetic specific heat for S = 1 and 

1001 

bT/IJI 
Figure 1. The specific heat of the effective Hamiltonian (2.3) with S = 1 and for various 
values of cy = A/ J. 
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Figure 2. The specific heat of the effective Hamiltonian (2.3) with S = f and for various 
values of a = AIJ. 

S = $ respectivelyt, We calculated the specific heats for different values of the 
parameter a = A/J,  including the rigid chain case a = 0. We found that the specific heat 
is independent of the sign of a, which is determined by the sign of J (as A is necessarily a 
non-negative quantity; see (2.4)). According to the initial form of the Hamiltonian 
(2.1), J > 0 corresponds to the antiferromagnetic case, whereas J < 0 corresponds to the 
ferromagnetic case. 

0 02 0.06 010 
a=A/ IJ I  

Figure 3. The maxima of the specific heats of He* for small values of a = A/J, in the case 
S=l. 

t Our figure 1 is very similar to figure 1 of Hintermann and Rys (1969). We are grateful to one of the referees 
for calling our attention to the latter. 



2486 M Knez‘eviC and S MilobviC 

From figures 1 and 2 one may notice that a more compressible lattice (i.e. a lower k) 
induces a shift of the specific heat maximum to higher temperatures and a gradual 
appearance of two broader maxima. These maxima may be attributed to the two 
different interactions in the effective Hamiltonian (2.3), which bring about short-range 
orderings associated with the ‘magnetic’ order parameter (Si) and with the ‘quadru- 
polar’ order parameter (S?)  (Thorpe and Blume 1972). 

In the case S = $ (see figure 2) it may be observed that the specific heat firstly 
increases with the increase of the lattice compressibility and afterwards decreases. On 
the other hand, from figure 1 it could be concluded that in the S = 1 case the specific heat 
maximum always decreases. However, a more detailed calculation (see figure 3) reveals 
the same behaviour as in the case S = $ .  The initial increase of the specific heat 
maximum, as well as the later appearance of the two broad maxima, is more noticeable 
in the S = $ case, for these effects are induced by the biquadratic interaction contribu- 
tion and it is much larger for S = $ than for S = 1. In figure 4 the J = 0 specific heats of 
the Hamiltonian (2.3) are depicted. One can notice that the biquadratic specific heat is 
considerably larger for S = 9 than for S = 1. 

060t 

&B(BT/A 

Figure 4. The specific heat of the J = 0 effective Hamiltonian (2.3). 

Concerning the observed shift of the specific heat of the complete Hamiltonian (2.3) 
to higher temperatures, we may point out that this effect is in agreement with the work 
of Salinas (1973) and with the result of Djordjevie and MiloSevik (1978). Namely, it 
follows from Salinas (1973) that a decrease in the lattice rigidity causes a shift of the 
specific heat to higher temperatures when the fixed-forces boundary conditions are 
assumed, but it moves the specific heat to lower temperatures in the fixed-volume case. 
The model studied here corresponds to the case of forces fixed at the zero value. 
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ke T/J 

Figure 5. The zero-field susceptibility of Hefi in the case J > 0, for S = 1 (the dashed curves) 
and for S = f (the solid curves). Each curve corresponds to a particular value of CY = A/J.  

Figure 6. The zero-field susceptibility of He* in the case J < 0, for S = 1 (the dashed curves) 
and for S = f (the solid curves). Each curve corresponds to a particular value of a = A/  1 J 1 .  
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In figures 5 and 6 we plot the zero-field susceptibility of Re, for J>O and J <  0 
respectively. One should notice that in the antiferromagnetic case ( J>O)  the low- 
temperature slope of the susceptibility decreases with increasing lattice compressiblity, 
whereas in the ferromagnetic case ( J<O)  it is the slope of the reciprocal of the 
susceptiblity that decreases under the same conditions. 

In conclusion, we may state that appreciable effects of the lattice compressiblity on 
the thermal properties of the Ising chain system with spin S = 1, or S =$, are 
established. There is no reason in principle why this work could not be extended to the 
case S > $. However, one should bear in mind difficulties encountered in the attmpt to 
obtain, for the S = 2 rigid Ising chain (Obokata and Oguchi 1968), the same set of 
results as those obtained for the rigid S = 1 and S = $ Ising chains (Suzuki et a1 1967). 
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